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A method is described for Lhe separation of a composite pulse-height spectrum into its unresolved component parts, which belong
to a set of measured library spectra. The method allows real-time estimation giving running estimates during acquisition of the
spectrum, minimises computation space, especially for a number of parallel calculations, estimates in advance the rms errors, and
produces a significance measure [or the hypothesis that the composite contains only the library spectra.

Least squares curve-fitting, and other methods, can be compared, with the formalism developed, allowing analytical companson of
the effect of detector energy resolution and detection efficiency. A rational basis for the choice between the vanous methods of
spectrum analysis follows from the theory, minimising rms estimation errors. The method described is applicable for very low

numbers of counts and poor resolution,

1. Introduction

A number of methods exist for the separation of the
components of a composite spectrum, such as the pulse
height spectrum due to the electromagnetic radiation
from a mixture of different radionuclides. A standard
approach and the one adopted here is to estimate the
number of counts that would be attributed to each of a
set of measured hibraryv spectra.

In this case, the particular objectives were to be able
to carry out the calculation in real time, to minimize
data storage requirements and to reduce estimanon
errors 1o the minimum.

The real time analvsis has been effected by up-dating
the estimates by a table look-up method as each count is
acquired.

Storage space is required for the tables, a compressed
form of the librarv spectra, and the running estimates,
only. Thus no additional storage space i1s reguired (o
achieve real time analysis. Further, the method allows a
number of different composites of the same library
spectra to be analysed in parallel.

Error minimization involved a separate study of the
accuracy of statistical methods such as x*, least squares
and moments andlyses. The most accurate method was
determined by the calculus of variations. Adaptation for
real time analysis and data compression does not pro-
duce a loss of accuracy.

A rnigorous mathematical derivation of the results
given here is provided in the appendices. Presented
below is a line of argument which should allow the
reader both 10 understand how the method works and
to implement it with the use of a computer interfaced to
a detector.
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2. Estimation of spectrum composition using the
“window” method

If a radioactive sample is supposed to be a composite
of an undetermined proportion of a certain set of com-
ponents whose pulse height spectra are known i the
form of a set of measured ‘“library’ spectra, a real ume
estimation of the counts attributable to each component
could be executed as follows.

1) At each energy channel the intensities of the spectra
are compared.

2) The spectrum with the greatest intensity 18 selected.

1) A ‘table’ is created for each spectrum containing 1
in each channel where that component is the *most
likely" and 0 elsewhere, thus dividing the spectrum
into a series of “windows'.
A composite spectrum is acquired. As each count is
acquired the energy is used as an index to select a |
or a ¢ from each table which is added to a 1otal
estimating tne number of counts attributable to that
component.

Thus each count is assigned to one or another of the
components according 10 which is the most likely, con-
sidering each measurement independently of the others.

The estimation carried out in this way 1s erroneous,
since each pure component in fact contributes counts,
in a certain proportion, to each window, thus a *blurred’
resolution is obtained, unduly equalising the propor-
tions of each component. °

The estimate may, however, be ‘corrected’, after
acquisition, as [ollows

4) A matrix is formed in which the i, jth element
shows the proportion »f counts in the /th spectrum
which are assigned to the jth total. This 1s



determined by multiplying the ith spectrum by the
j th table, summing the product at each channel and
dividing by the total number of counts.

5) This matrix is inverted so that the jth row shows
the composition corresponding to each table - a
composition which must include negative values if
the spectra overlap. The set of estimates 1s multi-
plied by this matrix.

The estimate resulting from this correction is a true
estimate. That is with increasing total number of counts
the estimate will converge to the true proportions.

However the corrected estimate is not longer ‘real
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time’ since a transformation of the estimate must be

carried out in retrospect. Further, storage space will be

increased since the matrix multiplication will introduce

fractional counts which are essential to accuacy should

we attempt to restore real time analysis by using the

matrix after each count, or a batch of counts, is acquired.
The estimate can be made real time again as follows.
Steps 1)-5) are carried out as above.

6) Instead of multiplying the estimates by the matnx
after acquisition, the tables are multiplied by the
matrix before acquisition.

7) A composite spectrum is acquired. As each count is
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Fig. 1. Procedure-flow chan for implementation of the method.
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acquired the corresponding value is read off the
corrected tables and added 1o the totals to form real
lime running estimates.

This method still has the defect of requinng frac-
tional counts to be accumulated with consequent in-
crease in storage space and dead-time. This may be
corrected as follows,

The corrected tables are calculated as above to a
relatively high order of accuracy, say 1 part in 64.

8) The value in each channel of each table is rounded
to a selected lower order of accuracy, passing the
rounding error from each channel onto the next
channel, maintaining a unit total in each channel
across the set of tables.

9) The correction matrix is re-calculated as in steps 4)
and 5) above. It will approximate to a umit matrix.

10) The truncated tables are corrected using this matnx
as in step 6) above.

11) The cvele of truncation and re-correction 15 re-

peated until integer values are obtained.
A composite spectrum is acquired and use of the
tables will add or subtract a whole number of
counts to each estimate. This has the effect of
incrementing just one total (as in the simple window
method) but then compensating for the overlap of
the spectra by transferring one or several counts
from one estimate 10 another,

The last-mentioned method will produce true esl-
mates in real time with no more storage space required
for each estimation than the memory requirements of
the estimate itself.

In appendix I a rigorous mathemalical presentation
of the above argument 15 given, while the Mow chart in
fig. 1 summarizes the implementation procedure.

3. Optimisation of the estimate - The ‘relative window’
method

While it is proved that the above window technigue
produces convergent estimates, it is not proved that
these estimates converge at a faster rate than any other.

It would appear that the binary assignation which is
used at the outset of the method is not optimal. Al-
though the use of the correction matrix ensures that
almost any tables can be used to derive tables which
will give convergent estimates, the optimal selection of
the tables is a different question. It has been proved (see
appendix 2) that optimal estimation is achieved if the
binary windows used in the initial set of tables are
replaced by a set of tables in which a count is assigned
to each component in proportion to the intensity of
each spectrum in a given channel - that is, to its relative
frequency at that energy. This measure 15 included in
the procedure shown in fig. 1 and proof of the optimi-
zation, using calculus of variations in relation to arbi-

trary tables, is given in Appendix IL.

It is remarkable that the method of reducing the
tables back to integer form results in a loss of accuracy,
relative to the optimum form of only a few per cent -
more than compensated for by the increased count rate
that results from the smaller dead-time integer anth-
metic causes in the acquisition. This is provided that the
spectra do not have extremely fine structure.

4. Estimation errors

The rms value of estimation errors arising from the
statistical variation of the component spectra from their
measured library forms may be calculated from the
‘correction’ matrix in advance of acquisition. The cor-
rection matrix is the matrix calculated as described 1n
steps 4) and 5) of section 2. above. multiplied by the
series of matrices calculated as in step 9) of the data
compression process. Since these latler matrices ap-
proximate to the unit matrix it will be seen that they
contribute only marginally to the estimation errors.

The estimation errors are estimated in rms as fol-
lows.

1} The meun of the diagonal elements of the correction
matrix, minus 1, is calculated.

2) This value is multiplied by the total number of
counts to be acquired and square rooted.

3) This value is the sum, in quadrature, of the errors
corresponding to estimation of each of the different
components. Not every component will be subject to
equal error, but in many cases it will be sufficient 10
assume that they are. In this case, the "unit error’ n
estimating the intensity of a single component is
found by dividing the above value by the square root
of the number of components.
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Fig. 2. Vanation of rms errors with co-resolution and peak /1otal
ratio of typical sets of component spectra.



Fig. 2 illustrates how this unil error varies with peak
shape and separation, and some examples are given in
appendix [I. The.estimates obtained will be true irre-
spective of the choice of a priori composition.

5. Significance of the estimate

This estimated error is valid only if the composite
spectrum is acquired under the same conditions as the
library spectra and contains no foreign elements. The
hypothesis that this 1s so can be tested in retrospect, or.
if desired, 1in real time during acquisition, by up-dating
one additional total computed as follows, (see appendix
3 for proof)

1} The scalar product of each library spectra with each
of a set of tables is calculated to form a matrix. The
library spectra, or their derivatives, may be used for
the tables.

4) A ‘significance measure’ is calculated during acquisi-
tion using this table in the same way as already
described for the estimation itself.

The rms of this total corresponding to a valid estima-
tion is calculated as follows.

The significance table is squared and the scalar prod-
uct of this table with an ‘average spectrum’ com-
posed of the library spectra in equal proportions 1is
calculated. This value is multiplied by the number of
counts and square root taken.

Comparison of the measured significance total with
the known rms value will indicate the degree of
conflidence which may be assigned to the estimation.
If it lies within the computed rms range, then the
true composition may be assumed to lie within the
range of the unit error of the estimation compositian.

5)

6)

6. Experimental verification using simulated composites

2) This matrix 1s inverted and the elements in e¢ach
column summed. A single wire proportional counter was connected to
3) A linear combination of the library spectra is formed an analogue-digital converter via a sample-and-hold
with the coefficients so obtained, and 1 is subtracted circuit and interfaced to a microcomputer programmed
from each channel. to implement the above method. X-ray fluorescence
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Fig. 3. Component spectra used in example of application of method.
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Fig. 6. Tables reduced to integer values.

spectra of Rb and Mo, obtained by irradiation with 60
keV *“Am radiation, were used as two library spectra of
64k counts each. A sernies of 100 pairs of component
spectra were acquired, and then combined to form a
series of 100 composite spectra the true composition of
which was thus known. The method of estimation
described above was applied and the estimation errors
measured, The spectra and incrementing tables used are
illustrated in figs. 3 to 6.

In addition 20 composites were acquired by the same
method and subject to a variation in gain by a numeri-
cal technigue. Both estimation error and significance
measure were computed for these samples. The results
are shown in table |, from where it can be seen that the
errors measured experimentally closely approximate to
the predicted values, and marked shifts in the signifi-
cance measure were recorded when detector gain was
varied sufficiently to cause a systematic error in estima-
tion.

7. Comparison with other methods of separation |6, 7|

Composite spectra may be separated by comparning
well-resolved peaks with the line-spectra of known
radionuclides. Such methods may be manual or auto-
mated. Techniques of this kind are difficult 1o bring
into comparison with the method described here. Al-
though invaluable in certain areas of work they are
unsuitable where the number of counts 1s very low, the
peaks are unresolved or real-tume analysis is required. It
is these latter areas that we have been concerned with
here. However, all methods depending on comparison
of a composite spectrum with a set of whole measured
library spectra — such as curve-fitting by the x? method
or least squares method, or using first derivatives of the
spectra, as well as the window method mentioned above
or comparison of the series of moments of the spectra -
may be executed by the proposed method of real-time
analysis. In each particular method however, the relative



Table 1
Results for expennmental verification using simulated composites

Library spectra Rb Mo
No. of channels 256 256
No. of counts 64k 64k
Peak channel 100 135
FWHM 28 37

% cts within fwhm 47 45

% Coresolution = {135 — 100) /;{28+37)x 100 =110

Spectrum overlap, 4 0.68

Various predictions of unit error £, = rms error/yno. cts

(1) From spectrum overlap, 4: 1yA4d/(1— A4) 0.73
(2) From graph in fig. 2: 0.78
(3) From eq. {39) and integered 1ables in fig. &: 0.86
(4) From eq. (39) and iniual tables in Lig. 4. 0.72

(5) Estimate (3), weighted by fwhm for various compositions:
Rb: Mo 0:4 1:3 2:2 3.1 4:0
Estimate 1.00 0.93 0.86 081 0.75

Experimental results: empirical measures of umit error
100 composites of various compositions of 1k cts (WN = 32)

Rb: Mo 0:4 1:3 2:12 3:1 4:0 all tests
rms /N 1.00 0.99 0.83 0.82 0.69 0.88
5%ile/1.96 YN 1.03 1.04 1.14 1.09 0.73 1.03
Mean error X yno. tests ;’fﬁ 0.70
Experimental results: sigmflicance measure

20 composites of 2k cts, composition Rb: Mo = 2:2, with detector gain varied slightly from iniual setung

Gain 1.00 0.99 1.01 0.98 1.02

Mean sig. measure. yno. tests /rms 0.43 1.97 -4.61 261 ~5.98

Mean error. yno. tests /rms -1.8 0.1 ~ 6.96 6.83 -132

frequency tables used in the initial phase as described
above, are replaced by tables having a form correspond-
ing to that method. In all but the method proposed here
these will not be of the optimal form. (See appendix 1V
for specific treatment.)

It should be pointed out that the x? method as
conventionally applied in this area of radiation science
is in fact erroneous, since the values of the frequency of
each channel in the acquired composite spectrum are
used to weight the fitting musclosure to be mimirmised. In
the true x? method, the frequency of each channel in
the mean expected composite spectrum should be used.
In this latter case x? is effectively identical to the
method proposed. (See appendix IV for proof.) In the
former case a systematic error in estimation results,
especially for low count numbers [11].

8. Summary

The procedure for implementing the method
described here is shown in fig. 1. The method involves

an initial phase of processing of the library spectra, so

that as the composite spectrum in guestion is acquired i

is necessary only to read a value off a table of integers,

using the energy of the acquired count as an index, and
to add this to the total estimating the number of counts
attributable to particular components while the next
count is being acquired,

The advantages of the method may be listed as
follows:

1) Estimation is real-time, current estimates being up-
dated as each count is acquired.

2) Computer memory usage is minimised - being one
byte per component per channel plus the memory
space required to store the output estimate - a
saving which becomes critical where a large number
of parallel analyses are being carried out simulta-
neously.

3} The method is completely automatic.

4) The method is applicable for composites of one
count upwards where peaks may be completely over-

lapping.



5) Dead-time will be small, and comparable to the
dead-time of an integrated circuit ADC providing
the digital input to the computer.

6) Rms estimation errors are known in advance of
acquisition of the composite spectrum. The same
error estimation formulae are applicable to other
methods of spectrum analysis, such as least squares
curve fitting,

7) The rms estimation errors are minimised.

8) A significance measure is obtainable, in real time,
also applicable to other methods of separation,

9) Background stripping may be done automatically
without additional computation during acquisition
by including the background as an additional but
undetermined component.

Not all the above advantages will be utilised since

trade-off between the various factors has to be consid-

ered, viz. accuracy vs memory usage, acquisition rate vs
real time analysis, reliability vs speed and space.

Appendix I
Formalism

A particular mathematical formalism is used which
should be explained. All lower case letters represent
functions of x (energy), with the exception of the indices
i, fy ... and x utself. All upper case letters represents
constants, independent of x,

The product integral

f*8=[f(x)g(x)dx (1)

is represented by the above shorthand, and plays a
central role, If f(x) is a frequency spectrum, (g{x) may
be any function) there are two possible ways of comput-
g f» g

1. Add g to total as each value of x is acquired (f
times).

2. Multiply f times g for each value of x, and add.
Method (1) is implied here. That is, g{x) is stored as a
‘table’, and acquired values of x will read values of g(x)
from the table, the value to be added to the total. Each
of the analytical methods of spectrum analysis corre-
sponds to using a particular set of functions for g( x),
(see appendix 4 below).

For instance, if we create a set of functions, g{x).
each corresponding to one of the component spectra,
f(x), such that g{x)= 1, where that component is the
most likely, that is where its value of f(x) is greater
than that of the other components, and g{(x)=0
elsewhere, then a composite spectrum could be sep-
arated into its estimated components by calculating
f* g, as above. This is called the ‘window’ method.

The { x) will be omitted in future.

Matrix operations are represented by using super-
scripts to denote column vectors and subscripts to de-
note row vectors. Matrix elements may be either con-
stants or functions. Scalar products (ie. row X column =
scalar) are indicated by using an identical index as both
subscript and superscript (eg. A'8, = (), implymng sum-
mation over the range of the index, which is always M,
the number of component spectra. Other matnx nota-
tion will be used when required, such as (4/)~'. I is the
unit matrix. 1/ represents a column of ones. Note that
the use of the indices makes multiplication commutative
and associative.

Further, a character 1s primed (eg. ¢’) to indicate an
actualised value as distinct from unprimed characters
which would represent hypothetical or estimated values
of the same quantity; a bar above a character (eg. )
represents an average or mean value; a tilde above a
character (eg. E) represents an rms value; a circumflex
(eg. ¢) represents an a priori value.

Estimation

¢’ IS a composite spectrum. composed of M pure
spectra, f', with intensities N, such that

¢ =f'N". {2)
The total number of counts is
N'=c¢c=1=]N" (3)
and f’ are normalised so that
fi+l=1. (4)

In advance of acquiring the spectrum, ¢’, a set of
‘incrementing tables’ g’ are created, and as ¢’ 15 acquired
the ‘projections’ P are computed as described above

by
Pl=g' e, (5)

The object is to choose the g' so that the P are good
approximations to N, namely N'.
To solve for g', substitute (2) into (3):

P'=g's fIN" (6)
The M X M square matrix, g’ + f’ we call P}, so that

P =pN", (7)
Pi=g'«Jf. (8)

The ‘correction matrix’ Q'] is defined as the inverse of
Pl so that

o =(pP) (9)
Nt =Q'P", (10)

The projection matrix is not known, since the actually
realised spectra, [/, are 'hidden’ within the composite,

L

.
An estimate of P’} may be made using the hypotheti-



cal, or ideal, library spectra, Ji:,:

Fi=g's f, (11)
0/=(#) . (12)
Eq. (10) gives N’/ exactly. Estimates of N’/, can be
calculated from the library spectra using

N/ =QIp" (13)
i.e. N/ = Q/P" Nk, (14)

Eq. (13) will allow us 10 make an estimate from P”
using arbitrary g' [9]. Eq. (14) shows how estimates are
related to the true values. The transformation matrix
I'{, which is required to approximate to a unit matrix, s
defined by

I''= QP (15)
50
Ni=[iN* (16)
Substituting (8), (11) and (12) into (15)
-, .

ri=(g'+f) (g'+fi). (17)
If
g’ = Qg (18)
then

I =1 i
¢'=(g'*/) s (19)
and (17) becomes
Fi=q'= fi. (20)

g’ are the ‘orthogonalised incrementing functions’ [10].
Whereas the g’ have up till this point been arbitrary
functions, the g/ have the special property that

@ fi=1 (21)
That is, the g/ will, on average, increment only f,, and
not f,, k = j. Thus, the projections, P"', resulting from
the choice of ¢' as g’ are estimates of N’/ That is,

Ni=g'ec'=(gqgf)N" (22)

Comparing eqs. (20) and (21), as f = f,, I’} = I, thus,
from (22), N' = N/,

Henceforth, wherever incrementing functions g’ given
by (19) are used, the projections will be referred to as '
rather than the more general P~

Appendix II

Optimisation of estimate

The issue now is to choose g’ such that the resulting
orthogonalised incrementing tables, ¢', lead to the most
rapid approach of N’ to N, That is, to minimise the

errors,
E'"=N'-N" (23)
Substituting (16) into (23), with

Dl=1"-1, (24)
E"=(1*)""-D* NV, (25)

The variation of the transformation matrix /'* from its
ideal form may be seen as originating from the variation
of the actual spectra from their ideal, library forms

d)=f -, (26)
d/x1=0, (27)
D*=g*ud. (28)

As each count 1s acquired, an error in the estimate N/ is
accumulated:

q’. with probability _;Ef' -1 (i=)) (29)

: e
g’ = |, with probability E}j

(Here we assume the different components have the
same a prioni probability.) Thus, the mean error, £/ is

] . !
ag (1) f— V) Vo= g (V= V) NT= 00 (30)

T3
The mean square error, ( £/) is

(E') = ([JTEIL «(¢/) [j=i)

.,.le;..{q;_l;}*).N-

L4 : z
= (Vi () = V). (31)
since f/» g/ =] (32)
and f4» 1 =1, (33)
Using ¢ = % I'f (the ‘average spectrum’) (34)
SO that{E"}2=N’(th"]——;’,] (35)

the ‘unit error’ in estimating the jth component 1s

Er=y(E/)'/N". (36)

Eqg. (29) 1s based on the a prion assumption that all
components are equally likely, The defimition (34) 1s
based on this. If there should be any basis for assurming
otherwise, ¢ as defined in (34) may be replaced by

=W, W'l =1 (37)

Where the incrementing method used here is used, ¢’ 1s
not known. If it is known we could use it in (35) which



would become

1 "

E"=\/""H’JE—E o

The optimum form of g/ must be such as to minimise
the errors as defined by eq. (36). We denote the variable
part of this expression by C,, so that

Cl=éx(g’).

El=JCI—1/M  or c— W, (39)

The calculus of variations may now be used to minimise
C/. Reverting here to the full integral notation g’ 1s
subject to the restriction

fq{,!’,dx =1, (40)

b is an arbitrary function and B a differential constant,
giving the variation Bb on ¢’ and the resulting vanation
m C/ is

5C/ =28 [éq'bdx + H‘fﬁbzdx.
Eliminating the term in B?, since B is small,
5C! = zﬂfequdx.

The restrictions (40) mean that & must satisfy

fhﬁd.x=[],. (41)

Putting ¢/ = p/ /¢ (42)

then, for minimum error (ie. 8C/ = 0J), we have

fﬁfbd_t: =0/. (43)

From (41) and (43) it follows that g, 15 any linear
combination of the f,; which particular combination 1s
determined by (40). So, defining p, as the a priori
relative probabilities

ﬁ;=—$f;,ff*,ﬂr asin (37), W f /¢ (44)

then g, =p, in (19) will give orthogonalised increment-
ing functions for which the unit error given by (39) will
be a minimum. The relative probabilites have the addi-
tional property that

pl =1, (45)
which leads to
Q=gql'=1, (46)

which means that every count acquired leads to a set of
increments which add to exactly 1. Thus the sum of the
estimates is exactly equal to the actual number of counts,

1.€.
N=N'l=N",

Egs. (44) and (19) together constitute a solution to
the task set out in section 1. A step by step procedure
for executing this procedure is set out in fig. 1., together
with an extension of the method which allows the g, to
be reduced to binary functions giving maximum data
compression.

A simpler measure of the accuracy of the method 1s
given by the sum of the mean square errors

E*=VE}=¢sq* -1, q¢*=q,9 (47)
Substituting (18) and (44) into (47) and using the defini-
tion (11), this expression simplifies to

E = WQ! -1, (48)

in which W Q! means the average value of the diagonal
elements in the correction matrix — the inverse of the
projection matrix, g' * f,.

For the case where there are only two components, f,
and f,, this expression may be evaluated as follows:

E*=14/(1-4)
with A4 =ff|(x)f2{x}f%[f1{x) +f,(x)] dx
for the following special cases, this leads to:

Non overlapping spectra,

[f|{-f]f1{x}=ﬂ]: A=0,E*=0:
[dentical spectra,
{fl{x)=f1(1}}5 A=1,E*=0;

Gaussians separated by 1 fwhm:
A =0.345, E*=0.263, E, =0.363,

For more than two components, if the spectra f, are not
linearly independent, then |P|=0 and Q; — o0. A could
be called the spectrum overlap.

Fig. 2 shows the variation of the unit error £ with
more familiar parameters. The unit error is approxi-
mately linearly dependent on co-resolution (mean
fwhm /peak separation) [8,13] but depends on the spec-
trum shape, measured by the peak /total ratio (propor-
tion of spectrum lying within the fwhm, 0.5 for an
expenential or a typical pulse height spectrum, 0.75 for
a Gaussian, | for a rectangular distribution).

If the approximate composition is known In advance,
or using the estimated composition itself, improved
estimation of the error is possible by using a weighted
average of the fwhm.

The trade-off between detector resolution and detec-
tion efficiency may be measured using fig. 2.

Note that the estimates and errors considered here
relate 1o spectrum population, not isotope activity, for

which the proportional error is always 1/yYN', additive



in quadrature to the unit error calculated here. E
originates from statistical variation in energy, not rate
of decay.

Appendix II1
Significance of the estimate

The hypothesis that the composite ¢’ contains only
members of the ensemble of library spectra, f, may not
be true; foreign components may be present or the
detector may be affected by voltage drift. Alternatively,
the statistical variations, 47, may be sufficiently large to
reduce the rehability of the estimate. These factors are
detectable to the extent that they contribute towards a
lack-of-fit between the ‘“‘constructed” spectrum, ¢, and
the actual composite, ¢’. Measurement of this lack-of-fit
will show whether the unit error, £, is based on signifi-
cant hypotheses. This cannot be an a priori measure like
E‘P which is known in advance of the acquisition of ¢',
but must be generated in the same way as the estimates
N’. x* measurement of the lack-of-fit provides one
possible avenue, but a method which can be carried out
by the incrementing technique is preferved.

The lack-of-fit is

d'=¢' —¢ (49)
d'*1=0, (50)
where ¢’ = f'N" and c=fN" (51)
Defining a fitting measure, 5

s=Sg — 1, (52)
in which the set of coefficients, 5/, must be such that
5+ f/ =0/ (orthogonality). (53)

The incrementing tables g, are arbitrary but for detect-
ing the presence of foreign spectra g, =f' is optimal,
and for detecting drift in detector gain etc. g, = (" s
optimal.

Substituting (52) into (53), using (4), and defining

Fl=g [/, (54)
thatis §' = 1/( F/) . (55)

Considering the projection of 5, F' =54 ¢’ using ¢’ =
f/N'+d" and noting (53), then

then §'F' = I/,

F=sed. (56)
Or, using (26), (51) and (53), this reduces to
Fr=s»dN" (57)

From here the expected value of F’, F, and the expected
square value of ', F2, can be calculated:

F=5% d'N" =0,
Fi_:sl . (d;d”)N”h{;* .

Since variations in the separate components of the
spectra are uncorrelated and there is Poisson statistics
(ie. mean square deviations = mean frequency) in each
channel, this becomes

Fl=sl« f N7, (58)

N’ is not known in advance of acquisition, but F? can
be calculated for a range of compositions, and the
appropriate value selected for comparison. using the
estimated composition.

Putting N, = N'/M for N/ (59)
and using the definitions (34) and (37) and

F= y’F,’N' (60)
(58) becomes F=s52 s &, (61)

£ will be normally distributed with the standard devia-
tion, F. If F deviates significantly from zero, then this
will indicate that the estimates N' are invalid. F’ does
not give a means of improving the estimates however.
Foreign spectra exist which will not be detected by F’
and dnft in detector gain will have null effect at some
composition, ¢, so more than one significance measure
may be necessary to ensure that the estimates have been
made under valid conditions. Where feasible such sig-
nificance measures are computed in real time as addi-
tional projections. The presence of background radia-
tion may be dealt with by reducing the library spectra
by background subtraction, and including the back-
ground spectrum, f,, in the ensemble, so that the incre-
menting tables, g,, are orthogonal to f, [1). The incre-
menting table g, corresponding to the background, and
the projection N, being an estimate of the background
count, need not however be computed.

Appendix [V
Comparison with other methods of separation [6,7]

(A) Least Squares fitting of composite spectrum by
composite of library spectra [3,12]: this method begins
from the requirement that

d’* d’' = minimum, /.e. 3/3N*(d" » d') =0, (62)
from which follows,

ffe(fiN*=¢')=0/, (63)

e N =(f/«f) 'frac, (64)

which is eq. (17) with f/ for g’/. This is not the optimal
choice, but the methods described above can be applied
to this method. Eq. (46) does not apply.

(B). x° method of fitting composite spectra: Here, the
value of the composite spectrum is usually used to
weight the contribution of each channel to the fitting



measure, Following a similar argument to (62), {63),
(64) above, it can be shown that this method is equiva-
fent to using

: P .
g/ =271/, (65)

which differs from (44) only by using ¢’ instead of é. In
fact x° tests should use the a priori frequency for the
weight in each channel so (44) represents a true x°
method. The traditional use of ¢’ in x? curve fitting is
erroneous and leads to systematic errors especially for
low count numbers [11]. Since ¢’ is not available before
acquisition, the above erroneous form of x? cannot be
used for real-time analysis. The identity between the
method derived here as optimal for estimation of inten-
sities and the well-established x2 method lends weight
to the results obtained above.

The use of x? rather than least squares (method A)
in curve fitting leads to equal contribution to the sum-
of-squares by each count. Each channel has it's contri-
bution normalised by the standard deviation of its con-
tribution. This leaves out of account physical rather
than statistical arguments, that channels having a high
frequency are less affected by noise, unrelated to the
source, and should therefore carry greater weight, as in
case (A) above.

(C). Least squares for x*) fitting of first derivatives of
intensity curves {4,5]: Since

[ (x0)dx= - [£2(x)f(x)dx
provided f{"(x)— 0 as x = + oo, we have here
g =/ (66)

This method will lead to greater emphasis being placed
on the peaks, for which the same comments apply as
above, which essenually relate to whether or not the
library spectra do represent the component spectra.

(D). Window method: Here g! = 1 or 0, according to
which of the relative probabilites, p/ is the greatest. The
resulting estimate of the composition must be corrected
by multiplication by the correction matrix Qj.

Pre-multiplication of the binary functions, g/, by @',
as in eq. (18) leads to a ‘real-time’ method similar to the
one described above. We could describe the method
derived above as a ‘relative’ window method, since each
count is divided between the various N/ in proportion
to the values of g/, rather than being allocated entirely
to one or the other.

The window method has the great advantage that it
uses only binary integers, with consequent saving of
memory-space, and provided the correction maltrix,
computed to full accuracy, is applied to the output, the
accuracy of the window method is only marginally less
than that obtained by using exact values of /. A
technique has been described above for adapting the

above ‘relative probability’ method to binary integer
incrementation, achieving optimum data-compression.

Appendix V

A summary of symbols used in the appendices is
given below
8.b  differenual constant, arbitrary vanation on g,;

¢ actual composite spectrum. ¢ composite of library spec-
tra approximating ¢’. ¢, a priori composite;

C, variable part of errors in estimating intensities;

d, deviation of actual components of spectra from ideal
form;

d’ deviation of actual composite from form ‘constructed’

from hbrary spectra.

D,/ deviation of transformation matrix from its ideal, unit
matrix, form:

E’/  error in estimating intensity N’/ (mean = E’, standard
value = E/);

£ square root of sum of mean square errors, £/,

F& pure library spectra; f*/ actual component spectra;

F! matrix of product integrals of pure library spectra;

F’ projection of sigmficance function, (standard value, F
R arbitrary incrementing function (also referred 10 as ‘ta-
bles’) {optimal form is relative probabilities g, ),
i Unit matrix. f'{ matrix transforming actual composition
into estimated composition;

N’ actual number of counts. ¥, sum of eshimated intensi-
Les;

N actual intensities of components. N', estimated intensi-

l11es;

P’Y projections of g';

B actual projection matrix. P/, projections of g with pure
library spectra f,

P, a priorni relative probabilities;

q, orthogonalised incrementing functions (tables), @ (con-
stant) sum of 4,

@ correction matrix transforming projections {estimates)

into actual composition. ¢, ideal form of @),

5 incrementing function for significance measure;

A coefficient of f, in s,

W a prion composition of spectra;

x ENErgy;

i, f, & (=1 to M) indices indicating one of the M component
spectra.
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